Dual-wavelength polarimetry for monitoring glucose in the presence of varying birefringence.
نویسندگان
چکیده
In a continuing effort to develop a noninvasive means of monitoring glucose levels using the aqueous humor of the eye, a dual-wavelength system is developed to show that varying birefringence, similar to what is seen with a moving cornea, can be compensated. In this work, a dual-wavelength, closed-loop system is designed and a model is developed to extract the glucose concentration information. The system and model are tested using various concentrations of glucose in a birefringent test cell subject to motion artifact. The results show that for a static, nonmoving sample, glucose can be predicted to within 10 mg/dl for the entire physiologic range (0 to 600 mg/dl) for either laser wavelength (523 or 635 nm). In the presence of moving birefringence, each individual wavelength produces standard errors on the order of a few thousand mg/dL. However, when the two wavelengths are combined into the developed model, this error is less than 20 mg/dL. The approach shows that multiple wavelengths can be used to drastically reduce the error in the presence of a moving birefringent sample and thus may have the potential to be used to noninvasively monitor glucose levels in vivo in the presence of moving corneal birefringence.
منابع مشابه
Real-time, closed-loop dual-wavelength optical polarimetry for glucose monitoring.
The development of a real-time, dual-wavelength optical polarimetric system to ultimately probe the aqueous humor glucose concentrations as a means of noninvasive diabetic glucose monitoring is the long-term goal of this research. The key impact of the work is the development of an approach for the reduction of the time-variant corneal birefringence due to motion artifact, which is still a limi...
متن کاملCharacterizing dual wavelength polarimetry through the eye for monitoring glucose
Diabetes is an insidious disease that afflicts millions of people worldwide and typically requires the person with the disease to monitor their blood sugar level via finger or forearm sticks multiple times daily. Therefore, the ability to noninvasively measure glucose would be a significant advancement for the diabetic community. The use of optically polarized light passed through the anterior ...
متن کاملNoninvasive polarimetric-based glucose monitoring: an in vivo study.
BACKGROUND Since 1990, there has been significant research devoted toward development of a noninvasive physiological glucose sensor. In this article, we report on the use of optical polarimetry for the noninvasive measurement of physiological glucose concentration in the anterior chamber of the eye of New Zealand white (NZW) rabbits. METHOD Measurements were acquired using a custom-designed l...
متن کاملMueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence.
Linear birefringence and optical activity are two common optical polarization effects present in biological tissue, and determination of these properties has useful biomedical applications. However, measurement and unique interpretation of these parameters in tissue is hindered by strong multiple scattering effects and by the fact that these and other polarization effects are often present simu...
متن کاملBirefringence measurement of the retinal nerve fiber layer by swept source polarization sensitive optical coherence tomography
A Swept Source Polarization-Sensitive Optical Coherence Tomography (SS-PS-OCT) instrument has been designed, constructed, and verified to provide high sensitivity depth-resolved birefringence and phase retardation measurements of the retinal nerve fiber layer. The swept-source laser had a center wavelength of 1059 nm, a full-width-half-max spectral bandwidth of 58 nm and an A-line scan rate of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomedical optics
دوره 10 2 شماره
صفحات -
تاریخ انتشار 2005